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Abstract 

Organophosphates (OPs) have been a primary component in pesticides the 

1940’s.  OP human toxicity was discovered prior to World War II (WWII), and some 

were developed as Chemical Warfare Agents (CWAs) that remain a threat to national 

security today.  Although originally designed for military applications, these compounds 

have been used successfully against civilian populations in the past.  One of the most 

toxic of the OP CWAs is O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate, 

commonly known as VX.    

VX can be deployed in numerous ways; however, air dispersal is considered one 

of the most likely routes, in terms of inflicting damage on a population.  Exhibiting high 

toxicity, high viscosity, low volatility, and relative resistance to degradation, VX is 

particularly persistent in the environment, making it especially dangerous.  The military 

has decontamination procedures in the event of a chemical warfare incident.  Standard 

operating procedures require contaminated personnel and property be decontaminated 

with a water solution containing bleach or soap.  The resulting decontamination waste 

water should then be largely contained; however, it would eventually have to be disposed 

of either as hazardous waste or possibly treated at a wastewater treatment plant (WWTP).   

There have been few studies to document the fate of these CWAs when subjected 

to a municipal wastewater treatment process.  This research examined the fate of 

malathion, a surrogate of VX, in bench-scale sequencing batch reactors that simulate 

secondary treatment in a municipal activated sludge (AS) WWTP.  Results show that 
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malathion may degrade in an AS WWTP as approximately 90% of an initial 

concentration of 4.25 mg L-1. 
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FATE OF MALATHION IN AN ACTIVATED SLUDGE MUNICIPAL 

WASTEWATER TREATMENT SYSTEM 

 
I.  Introduction 

Background 

Organophosphates (OPs) inhibit acetylcholinesterase, an enzyme essential to 

nerve function in insects, humans, and many other animals.  Acetylcholinesterase is an 

enzyme present in nervous tissue that metabolizes acetylcholine, a neurotransmitter, 

preventing excessive firing at neuromuscular junctions.  Once popular components in 

flame retardants, plasticizers, emulsifiers, and lubricating oil additives, OPs are currently 

predominantly used in insecticides, and pesticides (Szinicz, 2005).   The German 

Ministry of War began exploring the potential for OPs as chemical warfare agents upon 

discovery of their high mammalian toxicity in the 1930’s (Szinicz, 2005).  That research 

led to the development of nerve agents such as tabun, sarin, soman, and ultimately many 

years after WWII, VX(O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate).  

Nerve agents are OP chemical warfare agent (CWA) compounds created by condensing 

an acid such as phosphoric or phosphonic acid with an alcohol (Szinicz, 2005). 

 The toxicity of OPs affects and may disable the normal operation of the nervous 

system.  Acetylcholine (ACh) is a common neurotransmitter found in the central and 

peripheral nervous systems (Cannard, 2006).  Its function is to control muscular 

contraction.  In a system functioning normally, ACh is released from the axon terminal 

and binds with the receptor on the post-synaptic membrane causing muscular contraction 

(Cannard, 2006).  The enzyme acetylcholinesterase (AChE) terminates the action by 
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cleaving the ACh into choline and acetic acid (Cannard, 2006).  In a system with nerve 

agent poisoning, the nerve agent inhibits the AChE from terminating the action of the 

ACh by irreversibly binding with the AChE (Cannard, 2006).  The ACh continues to 

release and accumulate in the synapse (Cannard, 2006).  As a result, the muscles continue 

to contract, which causes nerve agent symptoms (Cannard, 2006).  

 Signs and symptoms of acute nerve agent poisoning vary from minor to severe 

depending on the dose received and duration of exposure.  Common minor 

manifestations include: dizziness, lethargy, miosis, vomiting, abdominal cramps, 

diarrhea, muscle fasciculation or weakness, and increased salivation, lacrimation, 

urination, and perspiration (Casarett, Doull, & Klaassen, 2007).  Severe manifestations 

include: mental confusion, incontinence, bronchial secretion, bradycardia or tachycardia, 

convulsions, coma, hypotension or transient hypertension, and paralysis (Casarett, Doull, 

& Klaassen, 2007).  Death occurs most often due to respiratory failure or 

bronchoconstriction (Gallo & Lawryk, 1991; Lotti, 2000, 2001). 

 Despite their development for military purposes, nerve agents have been used 

against civilian populations in the past.  Nerve agents were not used on enemy forces 

during WWII despite the mass development and production of the CWAs from the 1930s 

to 1950s (Szinicz, 2005).  The only casualties of nerve agent poisoning recorded during 

WWII were inmates of concentration camps and plant workers where the agents were 

produced (Wills & DeArmon, 1954).  The Germans tested the nerve agents on inmates to 

investigate their intoxicating effects and develop antidotes (Wills & DeArmon, 1954).  

Between 1983 and 1988, Iraqi military forces deployed tabun and sarin against Iran 

(Smart, 1997; Newmark, 2004).  Iraq deployed nerve agent again between 1987 and 1988 
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in support of their campaign against the Kurds (Szinicz, 2005).  Japan suffered sarin 

attacks organized by terrorist group Aum Shinrikyo in 1994 and 1995 in Matsumoto and 

Tokyo, respectively (Tu, 1996).  The attacks by Aum Shinrikyo killed or injured 

approximately 2000 civilians (Wiener & Hoffman, 2004; Bowler and others, 2001; 

Sidell, 1997).  Aum Shinrikyo attacked again in 1995, deploying VX on three separate 

occasions targeting judges (cns.miis.edu, 1996; Smithson & Levy, 2000).  Seven civilians 

were killed while the judges and 141 other civilians sustained nonfatal injuries 

(cns.miis.edu, 1996; Sidell, 1997; Smithson & Levy, 2000).  The United States began 

decommissioning its nerve agent stockpiles in the 1990’s (Wiener & Hoffman, 2004).  

Since then, there have been periodic reports of unintentional exposures generally due to 

mishandling (Wiener & Hoffman, 2004).  The most recent known nerve agent exposure 

occurred in 2004 during Operation Iraqi Freedom when two US Army Soldiers came into 

contact with an Iran-Iraq war sarin shell and experienced nonfatal symptoms 

(McDonough et al., 2008). 

 Sarin has been deployed the most throughout history.  However, VX is widely 

considered to be one of the most lethal nerve agent (Szinicz, 2005).  VX has a LD50 

[dosage (milligrams toxicant per 70 kilogram person) causing death in 50% of an 

exposed population] much lower than other nerve agents.  The LD50 of VX and the next 

lowest nerve agent, soman, is 10 mg/70 kg and 350 mg/70kg by dermal absorption, 

respectively (Sidell, 1997).  It also remains intact on surfaces, where as other nerve 

agents will evaporate unless shielded from the environment (Robinson, 1971; Wills & 

DeArmon, 1954).  VX has a hydrolysis half-life of 1,000 hours at pH 7, and an extremely 

low volatility of 10.5 mg/m3 (Sidell, 1997; Munro et al., 1999).  In comparison, soman 
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has the next lowest hydrolysis half-life of 60 hrs at pH 6, respectively (Munro et al., 

1999).  Tabun has the second lowest volatility of all nerve agents at 610 mg/m3 (Munro et 

al., 1999).  Sarin has the highest LD50 and volatility at 1,700 mg/70kg and 22,000 mg/m3, 

respectively (Munro et al., 1999).  VX is, by large margin, the most toxic, least volatile, 

and most persistent nerve agent in the environment..   

 Standard operating procedures for responding to CWA incidents dictate that 

contaminated personnel, property, and surfaces would be decontaminated with a water 

solution possibly containing bleach (Eng et al., 2002).  The resulting decontamination 

waste water should then be largely contained to avoid further spread of contamination.  

However, inability to completely contain the decontamination waste water is inevitable.  

If the attack was airborne, buildings, surface water sources, and a large, diverse land area 

may be contaminated.  Some contamination may find its way into the sanitary sewer. 

Ultimately, the decontamination wastewater must be disposed of as hazardous waste or 

possibly treated at a WWTP.  There are no studies that document the fate of VX or its 

degradation products in a municipal WWTP , although a few relevant studies related to 

degradation of OP compounds in WWTP are discussed below.  Note that biological 

degradation has been investigated for chemical demilitarization operations, but these 

results can not necessarily be applied in a straightforward manner to WWTP since the 

biological degradation in chemical demilitarization operations can be highly engineered 

to be specific for degradation of OPs.  OP concentrations would be lower in a CWA 

incident due to dilution and the treatment system, not specifically designed to degrade 

OP, will vary by municipality. 
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Municipal WWTPs generally consist of three treatment phases (Fig 1).  The 

primary treatment phase is responsible for removing larger debris and sediment with grit 

chambers and bar screens.  The secondary phase is responsible for the removal of organic 

carbon, nutrients, and ammonia (Droste, 1997).  It consists of an aerobic reactor 

containing activated sludge (AS), which is flocculated biological growth and wastewater.  

The bulk of the treatment occurs in this phase.  During the operation of a WWTP, a 

portion of the AS is wasted every 15 – 20 days approximately in order to maintain a 

healthy and efficient nitrifying community (Metcalf & Eddy, 2002).   The growth rate of 

autotrophic nitrifiers is dependent on favorable environmental variables and is much 

slower than heterotrophic bacteria (Droste, 1997).  The waste sludge may be used for 

farming or sent to a landfill (Droste, 1997).  Wasting is an effective method of 

contaminant removal for hydrophobic compounds (Bondarenko & Gan, 2004; Thomas et 

al., 2009).   

AS consists of heterotrophic and autotrophic bacteria.  The heterotrophic bacteria 

obtain energy from the oxidation of the reduced organic matter (Droste, 1997).  The 

primary products of oxidation of the organic matter are carbon dioxide (CO2), water 

(H2O), and ammonia (NH3) (Droste, 1997).  The autotrophic bacteria obtain energy from 

the oxidation of inorganic compounds (Droste, 1997).  The autotrophic bacteria use the 

CO2 as a carbon source for cell synthesis and oxidize NH3 to nitrate (NO3) in the process 

of nitrification (Droste, 1997).  NH3 is oxidized to an intermediate, hydroxylamine 

(NH2OH), via the ammonia monooxygenase (AMO) enzyme during the nitrification 

process (Racz & Goel, 2010).  The AMO causes the hydroxylation of alkenes producing 

primary and secondary alcohols (Hyman & Wood, 1983; Hyman, et al., 1988).  It was 
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determined that organic compounds, such as estrogen and ethyl methylphosphonic acid, 

could be degraded in nitrifying AS through the cometabolism of AMO (Ren et al., 2007a; 

Shi et al., 2004; Vader et al., 2000; Schuldt, 2012).  

The tertiary or final phase is responsible for removing the contaminants that are 

able to pass through the primary and secondary phases.  This phase generally consists of 

filtration to decrease the total suspended solids in the effluent, chemical disinfection, 

and/or chemical nutrient removal.  The effluent is then discharged to a surface water 

body.  Compounds remaining post treatment will be discharged with the effluent or 

wasted with the sludge, which will introduce the untreated contaminants to the natural 

environment.  In some cases, the surface water body receiving the treated effluent may be 

used as a drinking water source downstream. 

 
Figure 1: Wastewater Treatment Process 

Problem Statement 

In the event of a CWA release, it is possible that some CWA contamination may 

enter the influent of the local municipal WWTP.  There have been few studies to 
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document the fate of VX or similar organophosphates when subjected to a municipal 

wastewater treatment process.  Given the stability and solubility of VX, there is a 

potential for the contaminant to leave the plant untreated or partially treated.  Receiving 

bodies of water may be contaminated as a result, affecting drinking water quality and 

possibly human health.  Similarly, VX contaminated waste sludge applied as fertilizer 

may affect the quality of the resulting agricultural commodities.   

 

Experimental Safety Constraints and Approach   

 VX is the one of the most lethal and persistent nerve agent.  It is highly regulated 

in the United States and beyond the capability of our research laboratory to perform 

experiments with it.  Accordingly, malathion was used as a surrogate in this research as 

some of its chemical and physical properties are similar to VX (Table 1). 

 
Table 1: Identity, Chemical and Physical Properties of VX and Malathion (Munro 

et al., 1999; Sidell, 1997; Bartelt-Hunt et al., 2008; Newhart, 2006) 
 Chemical 
Property/Parameter VX Malathion 
Chemical Formula C11H26NO2PS C10H19O6PS2 
Physical State Oily liquid Liquid 
Color Light amber/amber clear-amber 
Melting point -39°C 2.8 °C 
Boiling Point 298°C 156 °C 
Density, liquid (g/mL) 1.008 at 20°C 1.23 at 20°C 
Vapor pressure (mmHg 20 or 25°C) 0.0007 3.38 x 10-6 
Volatility (mg/m3) 10.5 * 
Vapor Density (air=1) 9.2 11.4 
Water solubility (g/L) 30 130 
Hydrolysis rate (half-life at pH 7) 1,000 hr 100 hrs 
Henry’s constant (H, atm x m3/mol) 3.5 x 10-9 4.9 x 10-9 
Log Kow 2.09 2.36 
Log Koc 2.5 2.77 
LD50 (mg/70kg) 10 246 to 471 

* - not available 
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 Malathion, introduced in 1950 by American Cyanamid Co., is a nonsystemic OP 

insecticide (Martin & Worthing, 1977).  Its low acute mammalian toxicity is due to its 

selective hydrolytic degradation via mammalian carboxylesterases, versus its oxidative 

activation to the potent acetylcholinesterase inhibitor malaoxon in insects (Brown et al., 

1993).  Over 16.7 million pounds of malathion is used annually in public health, 

residential, and agricultural settings in the United States (Newhart, 2006).  An ideal VX 

simulant would mimic the relevant chemical and physical properties of the agent without 

the human toxicity (Bartelt-Hunt et al., 2008).  Malathion has a much lower human 

toxicity with a minimum estimated LD50 of 246 mg/kg compared to 10 mg/kg for VX 

(Farago, 1967; Jusic & Milic, 1978).  Sorption to and desorption from organic carbon is 

governed primarily by log Kow value (Bartelt-Hunt et al., 2008).  VX and malathion have 

similar log Kow values at 2.09 and 2.36 respectively (Bartelt-Hunt et al., 2008).  Chemical 

volatilization is governed by the Henry’s constant.  The Henry’s constants for VX and 

Malathion have 10-9 magnitudes; therefore, both should partition similarly between water 

and air (Bartelt-Hunt et al., 2008; Munro et al., 1999).  Biodegradability is governed 

primarily by chemical structure, and malathion is one of the most structurally similar 

simulants available (Bartelt-Hunt et al., 2008).  Hydrolysis is primarily dependent on the 

presence of similar bonds at which the hydrolysis reaction occurs (Bartelt-Hunt et al., 

2008).  Under alkaline conditions, the hydrolysis of malathion proceeds at a rate 

reasonable for it to be used as a surrogate for VX (Bartelt-Hunt et al., 2008).   
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Research Questions 

The objective of this research was to determine experimentally the capacity of 

municipal WWTP AS to degrade malathion, a surrogate for VX nerve agent, in bench-

scale studies.  Additionally, this study aimed to determine the mechanisms for removal of 

malathion, sorption capacity of the AS, and the effect of malathion degradation on both 

COD oxidation and nitrification.   

The primary goals of this study were to determine: 

1. The degradation of malathion by municipal WWTP AS 

a) The capacity for AS to degrade malathion 

b) Degradation kinetics of AS with respect to malathion 

2. The capacity of the AS to sorb malathion.  

3. The role of nitrifying and heterotrophic bacteria in the degradation of 

malathion. 

Scope and Approach 

This research sought to simulate the secondary treatment phase of municipal 

WWTP in the laboratory by designing and operating a 2.0 L sequencing batch reactor.  

This sequencing batch reactor, seeded with activated sludge from the Fairborn Water 

Reclamation Facility (FWRF), Fairborn, Ohio, was fed simulated wastewater and 

provided the AS samples used in the batch test experiments. 

Batch test experiments were completed to determine sorption characteristics of 

malathion to activated sludge and the ability of AS to degrade malathion.  The results 
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provided insight into the fate of VX in a municipal WWTP and the subsequent risk that 

may exist if the agent or products of its degradation exit the treatment process unchanged. 

Significance 

In the event of a CWA incident, contamination will be widespread.  It is possible 

that VX decontamination wastewater may be sent, inadvertently or purposely, to a 

WWTP.  There is a risk these compounds may leave a WWTP untreated or partially 

treated in the effluent or waste sludge and compromise the health of the surrounding 

natural water bodies.  This poses significant human health concerns to communities 

downstream that may use connected water bodies as a source of food or water.  It is 

important to understand the behavior of these OPs in AS biological systems in order to 

prevent the spread of contamination and reduce the risk human exposure in the event of a 

CWA release. 

Preview 

This thesis is written in the scholarly article format.  Chapter 2 is a journal article 

produced from this research for future journal submission.  Written as an independent 

chapter, it includes the following: abstract, introduction, materials and methods, results 

and discussion, and conclusions.  Chapter 3 serves as a final discussion of the article 

conclusions.  It summarizes the findings, research limitations, and presents opportunities 

for future research not discussed in Chapter 2. 
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II. Scholarly Article 

Abstract 

Organophosphate compounds are used as pesticides and in chemical warfare 

agents such as nerve agents. VX (O-ethyl S-[2-(diisopropylamino)ethyl] 

methylphosphonothioate) is one of the most toxic and environmentally persistent of these 

nerve agents.  This research examined the fate of malathion, a pesticide and surrogate of 

VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate), in bench-scale 

activated sludge (AS) sequencing batch reactors.  Sorption kinetics and sorption 

equilibrium isotherm experiments indicate that sorption to AS biomass was not a 

statistically important removal mechanism.  However, approximately 90% of the initial 

4.25 mg L-1 malathion concentration degraded primarily via heterotrophic activity.     

 Keywords: Organophosphate chemical warfare agents, malathion, activated 

sludge, VX biodegradation 

 

Introduction 

Organophosphates (OPs) have been a primary component in pesticides since the 

1940’s.  Their human toxicity was discovered prior to World War II (WWII) and was 

developed as chemical warfare agents (CWAs), specifically nerve agents, which remain a 

threat to national security today.  Although originally designed for military applications, 

these compounds have been used successfully against civilian populations in the past.  

The German Ministry of War began exploring the potential for OPs as CWAs upon 

discovery of their high mammalian toxicity in the 1930’s (Szinicz, 2005).  That research 
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led to the development of nerve agents such as tabun, sarin, soman and ultimately, VX 

(O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate).  OPs used as CWAs 

affect the normal operation of the nervous system by irreversibly binding to 

acetylcholinesterase (AChE) causing acetylcholine (ACh) to accumulate and 

continuously contract muscles (Cannard, 2006).  VX is widely considered to be one of 

the most lethal nerve agent and is the focus of this research (Szinicz, 2005).  VX has the 

lowest LD50 and the highest environmental persistence among nerve agents (Robinson, 

1971; Wills et al., 1954). 

Standard operating procedures for responding to CWA incidents dictate that 

contaminated personnel, property, and surfaces would be decontaminated with water 

(Eng et al., 2002).  The decontamination waste water should then be largely contained to 

avoid further spread of contamination; however, some loss of containment is inevitable.   

Ultimately, the decontamination wastewater must be disposed of as hazardous waste or 

possibly treated at a wastewater treatment plant (WWTP). There are few studies that 

document the fate of VX or its degradation products in a municipal WWTP.  However, it 

is expected that VX could be degraded by the wastewater treatment activated sludge 

(AS), removed from the waste sludge through sorption, or may pass through treatment 

unchanged posing risks to downstream populations. 

VX is regulated by the Chemical Warfare Convention and was not able to be used 

for this study.  Compared to other nerve agents, VX has one of the lowest LD50 and 

exhibits the highest persistence.  (Robinson, 1971; Wills & DeArmon, 1954).  Therefore, 

malathion was used as a surrogate for this research to mimic the relevant chemical and 

physical properties of the agent without the human toxicity (Bartelt-Hunt et al., 2008).  
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Malathion has a much lower human toxicity with a minimum estimated oral LD50 dosage 

of 246 mg/kg (milligrams toxicant per 70 kilogram person) compared to 10 mg/kg for 

VX (Farago, 1967; Jusic & Milic, 1978).  VX and malathion have similar log Kow values 

at 2.09 and 2.36 respectively (Bartelt-Hunt et al., 2008).  The Henry’s constants for VX 

and Malathion have 10-9 magnitudes; therefore, both should partition similarly between 

water and air (Bartelt-Hunt et al., 2008; Munro et al., 1999).  Biodegradability is 

governed primarily by chemical structure, and malathion is one of the simulants most 

similar to VX (Bartelt-Hunt et al., 2008).  Under alkaline conditions, the hydrolysis of 

malathion proceeds at a rate reasonable for it to be used as a surrogate for VX (Bartelt-

Hunt et al., 2008).     

This goal of this research was to investigate the capacity of municipal WWTP AS 

to degrade malathion in bench-scale studies.  Additionally, we investigated the 

mechanisms for removal of malathion, namely sorption capacity of the AS, and the effect 

of malathion degradation on COD oxidation and nitrification. 

Materials and Methods 

Chemicals 

Malathion (95% purity, CAS 121-75-5), product M00825, was purchased from 

Pfalz & Bauer (Waterbury, CT).  The malathion was stored in a freezer at approximately 

-20°C.   All other chemicals used in the experiments were high-pressure liquid 

chromatography or analytical grade. Cleaned, amber colored, autoclaved glassware was 

utilized during the experiments to prevent contamination and potential photolytic or 

biologic degradation.   
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Sequencing Batch Reactor Operation 

The reactor was operated using a method adapted from Racz et al. (2010) and 

Schuldt et al. (2012), and is diagrammed in Figure 2.  A 2.0L sequencing batch reactor 

(SBR) was constructed and seeded with AS from the Fairborn Water Reclamation 

Facility (FWRF), Fairborn, Ohio.  The FWRF has a design flow of 6 million gallons per 

day (MDG) with an average daily rate of 4.4 MGD.  The solids retention time (SRT) at 

the facility is 12.5 days in the summer and 11 days in the winter.   FWRF averaged 97% 

and 99% for biological oxygen demand (BOD) and NH3 removal, respectively. 

Deionized water was utilized exclusively in the reactor and feed solutions to avoid 

interference from ions such as copper, calcium, and magnesium, and lead commonly 

found in tap water.  The reactor was given two feeds (feed A and B) to simulate the 

composition of wastewater.  The feeds provided the carbon, nitrogen, and nutrients 

necessary to achieve simultaneous chemical oxygen demand (COD) removal and 

nitrification.  Feed A contained 44.6 g sodium bicarbonate (NaHCO3) per liter of 

deionized water.  The sodium bicarbonate ensured sufficient alkalinity existed in the 

system to support nitrification.  Feed B, the wastewater simulant, contained the following 

ingredients per liter of deionized water: 3 g peptone, 1.25 g sodium acetate (NaOAc), 

2.26 g ammonium chloride (NH4Cl), 6.86 g magnesium chloride (MgCl2·6H2O), 1.72 g 

calcium chloride (CaCl2·2H2O), 0.6675 g potassium dihydrogen phosphate (KH2PO4) 

and 20mL of a trace element solution.  Peptone is an easily metabolizable source of 

organic carbon with amino acids which provides nitrogen and energy for heterotrophic 

bacteria (Racz et al., 2010).   Sodium acetate was added to the feed to simulate the 
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volatile fatty acids commonly found in municipal wastewater (Kindaichi et al., 2004).  

The trace elements in the mixture normally exist in municipal wastewater in minute 

quantities and are essential to the growth of the organisms in the AS.  The composition of 

the trace element solution was adapted from Hesselmann et al. (1999) and contained the 

following per liter of deionized water: 5.46 g citric acid (C6H8O7), 4.0 g hippuric acid 

(C9H9NO3), 0.72 g nitriloacetic acid (Na3NTA·2H2O), 0.3 g sodium ethylene diamine 

tetra acetic acid (Na3EDTA·4H2O), 3.0 g ferric chloride (FeCl3·6H2O), 0.5 g boric acid 

(H3BO3), 0.3 g zinc sulfate (ZnSO4·7H2O), 0.24 g manganese chloride (MnCl2·4H2O), 

0.14 g copper sulfate (CuSO4·5H2O), 0.06 g potassium iodide (KI), 0.06 g sodium 

molybdate (Na2MoO4·2H2O), 0.06 g cobalt chloride (CoCl2·6H2O), 0.06 g nickel 

chloride (NiCl2·6H2O), and 0.06 g sodium tungstate (Na2WO4·2H2O). 

The reactor was continuously operated in identical 12 hour cycles.  With 1.33 L of 

AS in the reactor, the cycle began with the addition of 624 mL of deionized water, 38 mL 

feed A, and 8 mL feed B through a peristaltic pump increasing the total volume of each 

reactor to 2.0 L.  Eleven and one-half hours of aeration followed the filling sequence.   

During this period, the mixed liquor was aerated with compressed air to ensure adequate 

mixing, AS contact time, and dissolved oxygen concentrations.  The aeration and mixing 

stopped after the 11.5 hour aeration phase.  The AS was allowed to settle for 20 minutes.  

The cycle ended by decanting 670 mL of the supernatant.  The new cycle began with the 

addition of 624 mL of deionized water, 38 mL feed A, and 8 mL feed B.  The resulting 

hydraulic retention time was 36 hours.  The SRT was held at 20 days by wasting 100 mL 

of the AS from the SBR daily.  The reactors averaged 91% COD removal and 99% NH3-
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N oxidation.   The average total suspended solids (TSS) and volatile suspended solids 

(VSS) concentrations in the reactors were 1562 mgL-1 and 1306 mgL-1, respectively.  

 

Figure 2: SBR setup 

 

Solid and Liquid Phase Extraction 

Malathion was extracted directly from the solid and liquid phases of the mixed 

liquor by filtering a 10 mL sample with 1.2 μm Whatman GF/C glass fiber filter paper.  

The filtrate was collected in a 50 mL amber-colored glass vial.  Two mL of methylene 

chloride were added to the vials.  The vials were parafilmed, vortexed, and allowed to sit 

for one hour in order to extract the malathion from the water to the methylene chloride.  
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The sample was then transferred with a Pasteur pipette to a 1.5 mL amber glass auto 

sampler vial.  To extract malathion from the biomass solids, the Whatman GF/C filter 

paper holding the biomass solids was placed in a beaker.  Four mL of methylene chloride 

was added to the beaker.  The beakers were then covered with parafilm and placed in a 

Branson sonicator for 10 minutes.  After sonication, the methylene chloride in the beaker 

was transferred via Pasteur pipette to a 1.5 mL amber glass auto sampler vial.  Once the 

samples were placed in the 1.5 mL amber glass auto sampler vials, 20 μL of 100 ppm 

dimethyl methylphosphonate (DMMP) in methanol were added to the solid and liquid 

phase samples as an internal standard.   

GC/MS 

Sample analysis was conducted using an Agilent GCMS-6890N/5973 inert with a 

DB-35 mass spectrometer column (0.15µm film thickness, 0.25 mm id. x 30 m length, 

J&W Scientific, Folsom, CA, U.S.A.).  Detection and quantification of malathion was 

accomplished in selected ion monitoring (SIM) mode to increase signal to noise while 

minimizing sample run time.  A standard tune was performed on the mass spectrometer 

using bromofluorobenzene and the monitored ions for malathion and DMMP had m/z 

ratios of 125 and 124, respectively.  The calibration curves, prepared with each 

experiment to ensure accurate quantification, were created using the ratio of malathion 

peak area (retention time 11.8 min) to the summed area of the DMMP isomer pairs.  

DMMP peaks appeared at 4.2 and 6.8 minutes due to DMMP dimerization, and the total 

run time was 12.5 minutes.   
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The initial column temperature was 50°C for two minutes and increased at a rate 

of 20°C/min to 260°C.  The injection volume was 4 µl, and the syringe was rinsed with 

the sample six times before injecting the sample into the GC column. After sample 

injection, the syringe was rinsed three times with dichloromethane and three with 

methanol before the next sample began. 

Sorption Kinetics 

Sorption kinetic experiments were intended to determine the amount of time 

necessary for the AS to achieve maximum sorption of malathion.  A 200 mL sample of 

AS was heat inactivated in an oven at 80° C for 30 minutes in order to inhibit biological 

degradation.  At this temperature, the ribosomes of bacteria denature (Lee & Kaletunc, 

2002) with minimal changes in AS features (Ren et al., 2007).   Next, 10 mL of well-

mixed AS was transferred to nine test tubes each.  A tenth test tube was prepared with DI 

water to serve as the control.  Each sample was injected with 10 μL of 1000 mg L-1 

malathion solution.  The samples were then placed on a tube rotator and removed at 

intervals ranging from two to 30 minutes.   Once removed from the rotating disk, the 

samples were passed through a Büchner funnel with 1.2 μm Whatman GF/C glass fiber 

filter paper to separate the solid and liquid phases.  The malathion was then extracted 

from the solid and liquid phases, as described above.  The samples were compared to the 

control containing only water and malathion in order to account for the amount of 

malathion sorbed to the filter paper.  A two-tailed statistical analysis of variance (α=0.05) 

was conducted to determine if AS malathion sorption differed statistically from filter 

paper malathion sorption.  All measurements and tests were conducted in duplicate. 
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Sorption Equilibrium Isotherm 

The goal of this experiment was to determine sorption equilibrium coefficients.  

Two hundred fifty mL of heat-inactivated (80°C for 30 min) AS was distributed to 

Erlenmeyer flasks in dilutions of 1530, 830, 760, 560, and 270 mg L-1.  The TSS/VSS 

concentrations were measured for each dilution of AS.  A methanolic solution of 

malathion was added to each flask for final concentration of 1.66 mg L-1.  The flasks 

were placed on stir plates for 30 min to ensure maximum malathion sorption was 

achieved.  The malathion was then extracted from the solid and liquid phases of the AS.  

Hydrolysis was minimized by maintaining the pH of the AS between 6 and 7.  All 

measurements and tests were conducted in duplicate. 

 

Biodegradation 

The purpose of the degradation experiment was to determine the capacity of the 

AS to degrade malathion.  This experiment was conducted with batch tests using three 

separate Erlenmeyer flasks, each filled with 800 mL of AS.  Two of the flasks were exact 

duplicates containing AS, feed A, feed B, and malathion.   The third flask served as the 

control flask containing only AS and feed, but no malathion.  The flasks were aerated 

throughout the batch test.  Feed A (3.2 mL) and feed B (15.2 mL), were added to the 

flasks at the beginning of the experiment in volumes proportionate to those fed to the 

SBR.  Malathion (4.25 mg L-1) was also added to two of the flasks at the beginning of the 

experiment.  Samples were taken each hour from the flasks to measure concentrations of 

COD, ammonia (NH3-N), nitrate (NO3-N), nitrite (NO2-N), and malathion from the solid 
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and liquid phases.  COD, NH3-N, NO3-N, and NO2-N were measured to monitor the 

performance of the AS heterotrophic and nitrifying bacteria.   All measurements were 

conducted in duplicate. 

Reactor pHs were maintained between 6 and 7 approximately.  The pH in the 

reactors was measured at the beginning and end of each 12 hour cycle.  The pH was 

manually adjusted twice daily with Feed A.   

Biodegradation with Inhibition of Nitrification 

The purpose of this experiment was to determine the role of nitrifying bacteria in 

the degradation of malathion by AS.  This experiment was identical to the degradation 

experiment with one exception: 80 μM (10 mg L-1) allylthiourea (ATU) was added to the 

AS to inhibit nitrification (Konig et al., 1998).  In addition, a fourth flask containing only 

water and malathion was prepared as another control to account for abiotic effects such as 

volatilization, losses to glassware, and losses during the extraction process.  ATU was 

initially added 12 hours prior to the beginning of the experiment to ensure adequate time 

for nitrification inhibition.  An additional 10 mg L-1 ATU was added immediately prior to 

the test start time in order to ensure inhibition of nitrification for the duration of the 

experiment.  ATU is believed to bind with the copper of the AMO active site, and 

therefore selectively inhibits nitrification (Bédard & Knowles, 1989).  While ATU can 

inhibit nitrifiers at concentrations as low as 8 μM (Hofman & Lees, 1953; Tomlinson et 

al., 1966; Hooper & Terry 1973; Sharma & Ahlert, 1977), complete inhibition can be 

achieved at an ATU concentration of 86 μM without affecting other metabolic activities 

(Ginestet et al., 1998) with the exception of other monooxygenases.  Reactors pHs were 
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maintained between 6 and 7.   A two-tailed statistical analysis (α=0.05) was conducted to 

determine if malathion degradation with all bacteria active was statistically different from 

the malathion degradation with the nitrifiers inactive.  Measurements were conducted in 

duplicate. 

Other Analytical Methods 

Hach methods 8000, 10031, 10020, and 8153 were utilized to measure COD, 

NH3-N, NO3
--N, and NO2

--N concentrations.  TSS and VSS were measured using 

standard methods (APHA, AWWA, WEF, 1998).  All measurements and tests were 

conducted in duplicate. 

 

Results and Discussion 

Sorption Kinetics and Equilibrium Isotherms 

 The mean AS malathion sorption did not differ statistically compared to the mean 

filter paper malathion sorption (p=0.052).  AS malathion sorption remained constant with 

contact time (Fig 3) and varying TSS concentration (Fig 4).  Therefore, sorption would 

not be a viable removal mechanism for malathion in a municipal WWTP.  Further, data 

were analyzed using the Freundlich linear and Langmuir adsorption isotherm equations 

(Figs 13 and 14), which suggest that adsorption is insignificant under the experimental 

conditions investigated.   These results agree with the observation that the log Koc value 

of malathion has been reported as 3.07 (Aleksandar et al., 1995), which predicts that 

malathion will be less likely to sorb onto biomass and therefore more likely to remain in 

the liquid phase.  Similarly, the log Koc for VX is 2.52 (Davisson et al., 2005).  The 



22 

biomass is not acting like something that adsorbs malathion.  The larger the Koc, the more 

likely adsorption will occur, therefore; VX would be expected to adsorb even less.  

Malathion recovery ranged between 70% and 90%. 

 
Figure 3: Malathion AS Sorption: 4.25 mg L-1 inactivated sludge at 25° C 

 
Figure 4: Malathion Sorption Isotherm: 1.66 mg L-1 inactivated sludge at 25° C 
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It was assumed that the losses due to volatilization and photolysis were negligible 

because malathion has a low vapor pressure and Henry’s constant (Table 1), and 

photolysis was limited with the use of amber glassware or storing the chemicals in 

limited light.  OP compounds are known to undergo abiotic transformations in water 

caused by base catalyzed hydrolysis (Wolfe et al., 1990).    Malathion hydrolysis is pH 

and temperature dependent (Bartelt-Hunt et al., 2008; Brown et al., 1993; Newhart, 

2006).  Hydrolysis is the main route of degradation in alkaline aerobic conditions and 

may be a significant environmental degradation route (Bartelt-Hunt et al., 2008; Brown et 

al., 1993; Newhart, 2006).  Malathion hydrolysis is slow compared to biodegradation 

when the pH<7 and malathion is slowest at pH 4 (Bartelt-Hunt et al., 2008; Brown et al., 

1993; Newhart, 2006).   Under acidic conditions, potential hydrolysates formed are 

malathion monocarboxylic and dicarboxylic acid, diethyl thiosuccinate, diethyl 

thiomalate, and O, O-dimethyl phosphorothionic acid (Bartelt-Hunt et al., 2008; Newhart, 

2006).  Under alkaline conditions, malaxon, malathion monoacid, diethyl fumarate, 

diethyl thiomalate, ethyl hydrogen fumarate, O, O-dimethylphosphorothionic and O, O-

dimethyl phosphorodithioic acid may be formed (Bartelt-Hunt et al., 2008; Brown et al., 

1993; Newhart, 2006).   

Biodegradation 

 The liquid phase malathion concentration decreased by approximately 90% in 

each of the biodegradation experiments.  The malathion concentration continuously 

decreased over the 12 hour experiment from a concentration of approximately 4.25 mg L-

1 to approximately 400 μg L-1 (Figs 5 and 6).  Simultaneously, the NH3-N concentration 
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decreased from 14 mg L-1 to 0 mg L-1 and the NO3-N concentration increased from 40 mg 

L-1 to 140 mg L-1 within 12 hours, indicating nitrification was occurring.   The COD 

concentration, however, did not decrease as it had prior to the addition of malathion.  

Whereas before the addition, the COD effluent concentration was approximately 10 mg 

L-1, the effluent COD concentration fluctuated between 30 mg L-1 and 170 mg L-1 after 

malathion was added.   Therefore, the malathion did not inhibit nitrification, though may 

have affected COD oxidation. 

There are four potential causes for the increased COD concentrations near the end 

of the biodegradation experiments.  First, it is possible that the malathion stressed the AS, 

leading to cell lysis and passive release of intracellular soluble microbial products (SMP) 

(Henriques & Love, 2007; Barker & Stuckey, 1999).  However, nitrification was not 

affected in the biodegradation experiment with all bacteria active, and autotrophic 

nitrifiers are sensitive to toxic shock (König et al., 1998).  Second, the fluctuating COD 

concentrations could be the result of active excretion of SMP as a response of a toxic 

exposure.   SMP may be excreted in response to a toxic substance or to establish 

concentration equilibrium across the cell membrane (Barker & Stuckey, 1999).  Third, 

the COD is a release of materials from the extracellular polymeric substances (EPS) 

matrix in which cells in AS flocs are embedded (Henriques & Love, 2007).  Fourth, the 

inconsistent COD oxidation may be a stress response.  AS may respond to stress by 

diverting energy from growth to managing the stress condition (Villain & Marrot, 2013). 
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Figure 5: Malathion Biodegradation: 4.25 mg L-1 influent AS concentration at 25° C 

with nitrifiers active 
 

 In the second biodegradation experiment, 80 μM of ATU was added to each flask 

containing AS to determine the role of the nitrifying bacteria in the degradation of 

malathion (Fig 6).  A fourth flask containing only DI water and malathion was added to 

account for hydrolysis and other abiotic effects.  The biodegradation of malathion was 

unaffected by the inhibition of the nitrifying bacteria as the malathion concentration again 

decreased by 90 percent.  The mean malathion degradation with all bacteria active did not 

statistically differ from mean malathion degradation concentrations with the nitrifying 

bacteria inactive (p=0.546).  Since the inhibition of the nitrifying bacteria did not affect 

liquid phase malathion degradation, the heterotrophic bacteria were likely largely 

responsible for degradation.   
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Figure 6: Malathion Biodegradation: 4.25 mg L-1 AS at 25° C with nitrifiers 

inhibited 
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greater hydrolysis at high pH conditions (Love et al., 2004).  Hydrolysis and photolysis 

may be potential removal mechanisms.   

 
Figure 7: Malathion Abiotic and Biotic Degradation: 4.25 mg L-1 AS at 25° C 
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0.45% OOO(S) (Brown et al., 1993).  Isomalathion, OOS(S), and OOO(S) are 

significantly more potent inhibitors of mammalian acetylcholinesterase than malathion, 

with relative LD50’s measuring 95, 178, and 17 times greater in rats (Brown et al., 1993; 

Aldridge et al., 1979).  Figure 8 suggests these compounds were degraded in the AS as 

well. 



29 

 
Figure 8: GCMS Chromatograph of Impurity Degradation at (A) 0 hrs, (B) 4 hrs 

and (C) 10 hrs 

Conclusions 

These results suggest that if malathion were to enter a municipal WWTP, much of 

it may be degraded mitigating the risk of release in the effluent.  Nitrification would not 

likely be affected by the toxic load.  However, COD removal may be inhibited or become 
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unstable which presents new risks.  Furthermore, sludge wasting would not be an 

effective removal mechanism as sorption to the AS is negligible. 

This study demonstrates that malathion may largely degrade when exposed to a 

typical municipal wastewater treatment process, both biotically and abiotically.  Sorption 

kinetics and isotherm experiments resulted in negligible malathion sorption to AS 

minimizing the potential for sludge wasting as a removal mechanism, and the 

contamination of sludge by malathion.  Approximately 90% of the initial 4.25 mg L-1 

influent malathion concentration was biodegraded, mostly likely by heterotrophic 

bacteria.  Abiotic effects accounted for 40% of the malathion degradation, making 

hydrolysis and photolysis potential removal mechanisms.  Nitrification was not affected 

by the toxic load.  However, COD oxidation was negatively impacted.   

 

III.  Conclusions 

Chapter Overview 

This section summarizes the results and corresponding findings that answer the 

research questions.  The significance of this research will be highlighted as the findings 

are reviewed and areas for future research are identified. 

Review of Findings 

The research results demonstrate that malathion will degrade when exposed to a 

typical municipal wastewater treatment process.  Approximately 90% of the initial 4.25 

mg L-1 influent malathion concentration was biodegraded.  Nitrification was not affected, 
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though COD oxidation may have been inhibited.  Abiotic effects accounted for 40% of 

the malathion degradation.  Malathion sorption to AS was negligible. 

Significance of Research 

If a CWA incident occurred, contaminated personnel and property would likely be 

decontaminated with a water-based solution.  The contaminated wastewater could largely 

be contained.  However, it is conceivable that the wastewater may ultimately be sent to a 

municipal WWTP for treatment.    This research demonstrates that the majority of 

malathion will be degraded in the aeration phase of a typical wastewater treatment 

process.  Assuming VX and its hydrolysis products degrade similarly to malathion, there 

may be mitigated risk of downstream contamination of those specific OPs.  

Limitations 

VX and malathion share many physical and chemical characteristics.  However, 

these OPs may not behave exactly the same in a municipal WWTP. Therefore, the 

conclusions from this research may not apply directly to VX.  Conducting research with 

VX was beyond the capability of the AFIT Laboratory and this research project.  

Similarly, lab studies are intended to mimic natural field conditions on a microcosmic 

scale and provide the researcher a means to easily adjust those conditions in order to 

achieve a desired goal.  Field conditions are considered uncontrolled when compared to 

lab conditions which limits direct application of specific data presented above.  Namely, 

characteristics such as influent characteristics, sludge retention time, and toxic load may 

change often in a municipal treatment plant which affects the composition of the bacterial 
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community.  Furthermore, the synthetic feed was a wastewater stimulant, potentially 

altering the makeup of the bacterial community from a full-scale plant.   

Nevertheless, the results provide important insights to the probable behavior of 

OP compounds in AS.  In the event of a CWA, personnel and equipment will likely be 

decontaminated with water.  Any decontamination wastewater or CWA runoff entering a 

municipal treatment plant would be extremely dilute.  VX, like malathion, has many pH 

dependent hydrolysis products.  The hydrolysis compounds may be equally or more 

hazardous.  There is limited documentation on the fate of these hydrolysis products in a 

WWTP.   No abiotic degradation products of malathion were identified during this 

research, as it was not the focus of this research project.  

Future Research 

A longevity experiment should be conducted to determine the long-term effects of 

malathion on the AS.  An experiment that feeds a constant concentration of malathion 

over the course of an extended period of time would demonstrate whether the long-term 

health of the community would be negatively impacted.  Continuous introduction of the 

toxic load could affect degradation ability, bacterial community composition, bacteria 

growth, or cause cell death.  Once accomplished, a higher concentration should be 

evaluated to ensure similar performance.  Process characteristics such as sludge retention 

time should be varied as well to identify the TSS which yields maximum degradation.  In 

most cases, a longer SRT corresponds to a higher AS concentration and a lower effluent 

concentration of biodegradable substrates (Rittmann & McCarty, 2001). 
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The research results suggest abiotic effects, hydrolysis and photolysis, may be a 

potential removal mechanism for malathion and possibly VX.  An experiment measuring 

malathion degradation at various wavelengths of light may provide more insight to the 

potential to utilize photolysis as a removal method.  UV light is currently used in some 

WWTP’s as a tertiary treatment for bacterial disinfection.  In addition, hydrolysis is 

temperature and pH dependent.   There is potential for increased hydrolysis rate by 

increasing the pH and temperature of the system.  

Sorption kinetics and degradation experiments should be conducted on VX itself.  

While surrogates provide a safer alternative for research on toxic materials and can help 

establish boundaries to the experimental results, VX itself might provide the most 

accurate answers to these research questions.  

Summary 

 This research explored the fate of malathion, a surrogate for the OP CWA, VX, in 

a municipal WWTP activated sludge system.  The purpose of this research was to 

determine the ability of an activated sludge system to degrade malathion and avoid 

hazardous OP concentrations in the effluent.  The research included a series of batch tests 

using activated sludge grown in three identical sequencing batch reactors, seeded with 

sludge from the FWRF.  The data showed that malathion sorption was negligible.  

However, approximately 90% of the malathion degraded, biotically and abiotically, in the 

AS within 12 hours.  Furthermore, it was determined that the heterotrophic bacteria were 

likely responsible for the degradation and the nitrifiers played a negligible role in the 

malathion degradation.  Therefore, a conventional municipal AS wastewater treatment 
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process may be able to effectively degrade an OP CWA with characteristics to similar to 

malathion, though COD oxidation may be negatively impacted and degradation 

byproducts remain. 
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Appendix A. GCMS Calibration Curves 

 
Figure 9: Calibration curve for sorption kinetics 

 

 
Figure 10: Calibration curve for sorption equilibrium isotherm 
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Figure 11: Calibration curve for degradation with nitrifiers active 

 

 
Figure 12: Calibration curve for degradation with nitrifiers inhibited 
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Appendix B. Sorption Equilibrium Isotherm 

 
Figure 13: Sorption Equilibrium Isotherm: Freundlich TSS 

 

 
Figure 14: Sorption Equilibrium Isotherm: Langmuir TSS 
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